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LETTER TO THE EDITOR 

Unbinding transition of flexible Gaussian polymers in 
two dimensions 

G Gompper and U Seifertt 
Sektion Physik der Ludwig-Maximilians-Universitat Miinchen, 8000 Miinchen 2, Federal 
Republic of Germany 

Received 31 August 1990 

Abstract. The unbinding of Gaussian polymers with bending energy and external tension 
parallel to the wall is studied by scaling arguments and transfer matrix methods in two 
spatial dimensions. Unbinding transitions occur as the strength of the wall potential or the 
external tension is varied. Three different scaling regimes can be distinguished: (i) a stiff-rod 
regime; (ii) a semi-flexible regime; and (iii) a crumpled regime. Scaling functions are 
calculated numerically for the crossover behaviour. 

The unbinding transition of polymers in two spatial dimensions has been studied 
recently [ 1-31 in two different limits. A polymer is considered here as a flexible string 
of monomers, with fluctuations controlled by the bending energy. On length scales 
small compared to the persistence length [4], tp, it behaves like a flexible rod (semi- 
flexible regime) [1,2]. On length scales much larger than &, the bending energy 
becomes irrelevant. In this crumpled state, the polymer can be treated as an elastic 
spring [1,3,5]. In both cases, unbinding transitions are found to depend on the 
long-range tail of the wall potential, which falls off as z - ~  for large distances z. Potentials 
with p > p c  belong to the same universality class, while potentials with p < p c  are strong 
enough to always bind the polymer, where p c  = f in the semi-flexible limit, pc  = 2 for 
Gaussian polymers, and p c  = 3 for polymers with excluded volume interactions [2,3]. 
In this paper we (i) study the crossover from the rod-like to the crumpled polymer in 
the vicinity of an attractive wall, and (ii) discuss the effect of an external tension 
parallel to the wall. 

We consider a continuum model for a Gaussian polymer near a wall. The configur- 
ation of the chain will be described by (x(s), z(s))  and a($), where x and z are 
coordinates parallel and perpendicular to the wall, 6 is the local angle between the 
polymer and the wall, and s measures the distance on the chain. x(s) and z(s) are 
related to 8 ( s )  by dx/ds  = cos( 6) and dz/ds = sin( 6) .  The partition function is then 
defined by the path integral 
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Here, K is the bending modulus, and U an external tension along the x axis. At s = 0 
and s = 1 the position and angle of the polymer are fixed at the values x, z, 4 and x,, 
z,, 6,, respectively. The path integral implies the Schrodinger-like equation 

Potentials of the form 
- wz-p z >  a, 

0 4 z < a ,  
z c o  

(3) 

will be considered. If information about the distribution of x is not required, integration 
over x leads to a similar, but somewhat simpler equation for Zf( 6, zI a0, zo). Finally, 
for the free polymer, (2) can be reduced to 

Equation (4) can be used to calculate various quantities analytically in terms of Matthieu 
functions. For a free polymer with 6, = 0, we find that without tension 

{x) = 2K( 1 -e-''2K) ( 5 )  

and (x( 6)) = ( K /  T ) (  1 +cos( 6)) for 1 + CO. An expansion for small tensions yields 

( 6 )  
7 

1 4 
_- (x) - KU - - ( ~ a ) ~  + O( ( K ( T ) ~ )  

again for I+co. 
On length scales less than the persistence length, only angles 19<< 1 contribute to 

the partition function. The trigonometric functions can then be expanded, and one 
obtains the semi-flexible limit 

-+6-+-ufi2+ V(z) Z,(6,z16,,z,)=O 
a l a 2  a i  
a1 2K ao2 az 2 (7) 

which generalizes the Schrodinger-type equation-of [ 1,2] to a polymer with tension. 
We can introduce rescaled variables .?= z/a,, 6 = ( 2 ~ / a , ) ' / ~ 6 ,  r= ( 2 ~ a $ ' / ~ l ,  and 
U' = ( 2 ~ a i ) ' / ~ u ,  6 = (2K)1/3w, G = ~ K U ( ~ , / ~ K I ~ / ~ .  Then (7) reads 

where the potential is now given by 
i> 1 
O C i < l  
i<O. 

( 9 )  

For U = 0, three different scaling regimes [6,7] can be defined by comparing the 
asymptotic decay z - ~  of the potential V( z) and the fluctuation-induced repulsion 
V,, - Z-', with T = -2(d - l ) / ( d  - 5 ) .  The conditions p > T, p = T and p < T,  with T = 3 
for d = 2, correspond to the strong, intermediate and weak-fluctuation regimes, respec- 
tively. 
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For polymers much longer than the persistence length, the effective Hamiltonian [3] 

can be used to describe the critical behaviour of the polymer. Again three different 
scaling regimes [6]  can be defined by comparing the asymptotic decay z W p  of the 
potential V ( z )  and the fluctuation-induced repulsion V,, - z - ~ ,  but now T = 
-2(d - l ) / ( d  - 3 ) .  The effective Hamiltonian (10) is obtained by integrating out fluctu- 
ations on length scales shorter than the persistence length &, = K .  For a free polymer 
(with a = 0 )  this yields the effective tension X = X , / K ,  with a constant Z,=O(l) .  
However, near a wall this integration also leads from the bare potential V to the 
renormalized potential V,,, which cannot be obtained easily. Only when all length 
scales are much larger than tp is V,, = V .  With rescaled variables z* = z/a,, x  ̂= x / a o ,  
f =  1/(2Pa;),  and 6 = ZZaiu, 9 = 2Pw, all parameters can then be absorbed in the two 
variables 6 and 9. 

For a numerical study, we consider a discrete version of the model ( 2 ) ,  which is 
defined by the following recurrence relation for the partition function: 

Z l + , ( 6 ,  z , x ) = [ ( 1 - 2 q ) Z l ( 6 ,  z - 6  s in(6) ,x-b  cos(6)) 

+ qZ,( 6 -As, z - 6 sin(+), x - b cos( 6)) 

+ q Z , ( 6 + A 4 ,  z - 6  s in(6) ,x-  b cos(6))] 

x exp[ - V (  z )  + v6 cos( 611. (11) 

The angle 6 changes in discrete units 0, * A &  q is the probability of the polymer to 
have a bend of angle A 6  at the lth monomer. To implement the recursion numerically, 
we take discrete integer variables x, z, and a monomer length 6, which is considerably 
larger than unity. If ( z  - b sin(6)) or (x  - b cos( 6)) do not coincide with a lattice 
point, the nearest integer is used. 

The free polymer without tension is easily solved for the discrete model too, by 
transfer matrix methods. For large 1 and ( A 6 ) < <  1 (so that sums can be replaced by 
integrals) we obtain the same behaviour as in the continuum limit (9, with 

6 
2q(A19)~' 

K =  

This relation defines K for the discrete model. 
We consider first the unbinding problem with short-range interactions, i.e. w = 0 

in (3) .  As U approaches a critical value, U,, critical unbinding is observed with 
( z )  - (U - u c ) - " ~ ,  with vL = 1 .  This is exactly the behaviour expected from (10) .  However, 
for the critical potential strength U, we find three different scaling regimes, depending 
on the relative size of the length scales tP = K,  a, and the effective step size perpendicular 
to the wall, b L = q - ' b A 6 :  (i)  the stiff-rod regime, where a,<< K and b,>>a,, (ii) the 
semi-flexible regime, where 1 << a,<< K and 6, << a,  and (iii) the crumpled regime, where 
all length scales are large compared to the persistence length. 

In order to predict the behaviour in the st@-rod regime, we use the necklace approach 
of Fisher and Huse [8,9]. For ao= 1 ,  this approach is exact. The critical strength U, 
of the wall potential can be expressed in terms of the partition functions ZY"( 6 = 0, z = 
110, 1) and ZY"( 6 = T, z = l ( 0 , l )  of polymers, which start parallel to the (hard) wall 
at z = 1 and end parallel to the wall at z = 1 ,  but never touch the wall otherwise. The 
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io2 
j 

10 ; 

only quantity needed is G, = Z, ZF"(Ol0) + Zr"( ~ 1 0 ) .  A little thought shows that U, 
is determined by [ 9 ]  

(13) 

where U = exp(u,). The left-hand side of this equation is the free energy per monomer 
of a completely bound polymer. For large K ,  G,- K - * + O ,  so that simply U,= 
-In( 1 - 2q) = 2q. Together with (12), this implies 

~ ( 1 - 2 q )  = 1 - u2Gc 

q Al9 
0 0.25 15 
A 0.25 7.2 

0 q A* 
0 + + 0.25 30 

for a,= 1. 

In the semi-jlexible regime, the polymer fluctuates inside the potential well, but is 
still essentially parallel to the wall. Therefore, the free energy of the bound state is 
given by the free energy (per monomer), f- ai2", of a semi-flexible polymer between 
two hard walls with separation a, [ 11.  Then, (13) reads u er = 1 - u2G,, which implies 

with a constant c. This is exactly the behaviour of U, in the case of semi-flexible 
polymers (7)  although the divergence of ( z )  is determined by the effective Hamiltonian 
(10). Finally, in the crumpled regime, the critical strength is given by U,- (Ea;)-'  - K / u ; .  

For the continuum model, only regimes (ii) and (iii) exist. Therefore, in the 
continuum limit, U, has the scaling form 

where R(y) - y2'3 for y + m, and a ( y )  - y 2  for y + 0. The results obtained from the 
discrete model for various values of p ,  a, and A19 are shown in figure 1. The results 
agree very well with (14), (16). 

Figure 1. Scaled critical potential strength KU, as a function of the scaled inverse width 
( a O / K ) - '  of the short-range potential. The scaling function R in the continuum limit (16) 
is given by the upper envelope of the data points. Its asymptotic behaviour is indicated 
by the full lines. The broken line shows the stiff-rod result (14) for A 8  = 30". The step 
length used is b = 6 for Ae = 30" and b = 8 otherwise. 
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We study now the effect of a lateral tension u, which stretches the polymer parallel 
to the wall. Then, the critical strength of the potential depends on U. In the stiff-rod 
regime (i), we find that U, has a scaling form, 

as displayed in figure 2 ,  with S ( y )  - y - '  for large y .  For small u, E should be analytic, 
so that E ( y ) + E ( 0 ) - E 2 y  for y + O ,  with S ( 0 ) = b ( A 6 ) - 2 ,  see (14), and a positive 
constant E2. This implies that for 'relaxation induced critical unbinding' ( RICU), with 
u+O at U =  U, (u=O), 

2 

(2) - a - 2 Y ~ .  (18) 

In the semi-flexible regime (ii), scaling as in (7) leads to the u dependence of U, given 
by 

The data for different values of K and uo obtained from model (11) indeed show the 
expected scaling behaviour, see figure 3. Since U, should again be an analytical function 
of u at u = 0, O ( y )  + O(0) - 0 2 y 2  for y + 0, with O(0) = c, see (15), and a positive 
constant 02.  For large u, U, should become independent of K ,  which implies uc- 
(uu$', and O ( y ) +  y-'  for y + m .  In the crumpled regime (iii), uc- (ua$', see (10). 

q 
+ 0.25 

0 0.10 

X 0.05 

1 
1 10 1 o2 

KO 

Figure 2. Scaling function E of the critical potential strength as a function of the tension 
U in the stiff-rod regime (17).  The asymptotic behaviour is indicated by the full line. All 
data points have been calculated with a. = 1,  b = 6, and At9 = 30". 

Finally, we want to consider the unbinding transition in the case of long-range 
potentials with p = pc  = 2. The transition now depends on the details of the potential 
V(z). It can be characterized by the asymptotic behaviour of the probability 2, of an 
unbound polymer to return to the wall after I steps [9]. For large I, 2, - where 
J, is a function of the amplitude w of the tail, but does not depend on any other details 
of the potential. Three subregimes are found [3, 101. For w > w A >  0, J, < 1 and the tail 
itself is strong enough to always bind the polymer. As w + w: a transition may occur, 
where the polymer unbinds with an essential singularity in the parallel correlation 
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Figure 3. The scaling function @ ( K u ( ~ , / K ) ~ ' ~ )  = U ~ ( K ~ : ) " ~  of the critical potentia] strength 
as a function of the tension U, in the semi-flexible regime (19). The asymptotic behaviour 
for large U is indicated by the full line. All data points have been calculated with b = 8 
and q = 0.25. 

length (subregime A). For wA> w > wBC, 1 < Q < 2;  i f  a transition occurs as U is varied, 
it is continuous and the correlation length diverges with a power law, 6 - ( fi - &( $))-"ll, 

with vII = ( Q  - l)-' and U, = SvIi, where 5 = is the wandering exponent [6] (subregime 
B). Finally, for w < wBc < 0, the transition is first order with vll = 1 (subregime C). The 
phase diagram for the crumpled regime has been calculated in [ 101; it shows all three 
subregimes A, By C. 

The behaviour in the regimes (i)  and (ii) is more complex, however. In this case, 
there is a minimal value, Q* = J , (w* ) ,  of Q, which can be reached by varying w, with 
$> Q* > 1. For w > w * ,  the polymer is bound. This implies, in particular, that there is 
no subregime A in this case. In order to investigate this point further, we introduce a 
slightly generalized potential 

- w (  z + z 0 ) y  z >  a,  
V ( z ) =  I -U O s z < a ,  

k z<o.  

The phase diagram for a,  = 1 and zo = 10 is shown in figure 4. For w / K  > 0.91, the 
polymer is always bound, although Q (calculated with a sufficiently large value of zo 
in ( 2 0 ) )  reaches its 'critical' value J, = 1 only at w / K  = 1.48. It is numerically rather 
difficult to obtain precise values for Q ( w ) ,  but the results are consistent [lo] with 
J, = 1 +m, where d = ~Z, ,W/K.  For b = 6, Ai? = 30" and p = 0.25, we obtain wA/K = 
1.48, w ~ , - / K  = -4.55, and & = 0.082. This value of Xo is not the same as the value 
which appears in other properties, like the end-to-end distance of a free polymer. 

If fluid membranes in d = 3 are crumpled, as it is presently believed, similar 
phenomena are to be expected at unbinding transitions. In particular, it would be 
interesting to study relaxation induced unbinding (RIU)  transitions (see [ 111 and 
references therein). For attractive potentials with a power-law tail z - ~ ,  the membrane 
is always bound as long as an external tension is present. If the potential is weak 
enough and p > p c ,  it unbinds as U +  0 (complete RIU), whereas it remains bound for 



Letter to the Editor 

40 . 

K U C  

20 - 

0. 

L1167 

I I 
I bound I 
I I 
I I 
I I 
I I 
I I 
I 
I I 
I I 
I I 

- -  

" I unbound 

C i  B B I  A 

stronger potentials. For the potential which separates these regimes, RICU should be 
observed. 

We thank R Lipowsky for arousing our interest in this problem. US acknowledges 
support by the Sonderforschungsbereich 266 der Deutschen Forschungsgemeinschaft. 
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